Reliability and heterogeneity of calcium signaling at single presynaptic boutons of cerebellar granule cells.

نویسندگان

  • Stephan D Brenowitz
  • Wade G Regehr
چکیده

Activity-dependent elevation of calcium within presynaptic boutons regulates many aspects of synaptic transmission. Here, we examine presynaptic residual calcium (Ca(res)) transients in individual presynaptic boutons of cerebellar granule cells at near-physiological temperatures using two-photon microscopy. Properties of Ca(res) under conditions of zero-added buffer were determined by measuring Ca(res) transients while loading boutons to a steady-state indicator concentration. These experiments revealed that, in the absence of exogenous calcium buffers, a single action potential evokes transients of Ca(res) that vary widely in different boutons both in amplitude (400-900 nM) and time course (25-55 ms). Variation in calcium influx density, endogenous buffer capacity, and calcium extrusion density contribute to differences in Ca(res) among boutons. Heterogeneity in Ca(res) within different boutons suggests that plasticity can be regulated independently at different synapses arising from an individual granule cell. In a given bouton, Ca(res) signals were highly reproducible from trial to trial and failures of calcium influx were not observed. We find that a factor contributing to this reliability is that an action potential opens a large number of calcium channels (20-125) in a bouton. Presynaptic calcium signals were also used to assess the ability of granule cell axons to convey somatically generated action potentials to distant synapses. In response to pairs of action potentials or trains, granule cell boutons showed a remarkable ability to respond reliably at frequencies up to 500 Hz. Thus, individual boutons appear specialized for reliable calcium signaling during bursts of high-frequency activation such as those that are observed in vivo.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultrafast Action Potentials Mediate Kilohertz Signaling at a Central Synapse

Fast synaptic transmission is important for rapid information processing. To explore the maximal rate of neuronal signaling and to analyze the presynaptic mechanisms, we focused on the input layer of the cerebellar cortex, where exceptionally high action potential (AP) frequencies have been reported in vivo. With paired recordings between presynaptic cerebellar mossy fiber boutons and postsynap...

متن کامل

Optical measurement of presynaptic calcium currents.

Measurements of presynaptic calcium currents are vital to understanding the control of transmitter release. However, most presynaptic boutons in the vertebrate central nervous system are too small to allow electrical recordings of presynaptic calcium currents (I(Ca)pre). We therefore tested the possibility of measuring I(Ca)pre optically in boutons loaded with calcium-sensitive fluorophores. Fr...

متن کامل

Endocannabinoids inhibit transmission at granule cell to Purkinje cell synapses by modulating three types of presynaptic calcium channels.

At many central synapses, endocannabinoids released by postsynaptic cells inhibit neurotransmitter release by activating presynaptic cannabinoid receptors. The mechanisms underlying this important means of synaptic regulation are not fully understood. It has been shown at several synapses that endocannabinoids inhibit neurotransmitter release by reducing calcium influx into presynaptic terminal...

متن کامل

Inter-Bouton Variability of Synaptic Strength Correlates With Heterogeneity of Presynaptic Ca Signals

Kirischuk, Sergei, and Rosemarie Grantyn. Inter-bouton variability of synaptic strength correlates with heterogeneity of presynaptic Ca signals. J Neurophysiol 88: 2172–2176, 2002; 10.1152/jn.00217.2002. The elevation of presynaptic calcium concentration is a crucial step in excitation-secretion coupling. However, the amplitudes of actionpotential-induced presynaptic calcium transients can disp...

متن کامل

Neuromodulation at single presynaptic boutons of cerebellar parallel fibers is determined by bouton size and basal action potential-evoked Ca transient amplitude.

Most presynaptic terminals in the brain contain G-protein-coupled receptors that function to reduce action potential-evoked neurotransmitter release. These neuromodulatory receptors, including those for glutamate, GABA, endocannabinoids, and adenosine, exert a substantial portion of their effect by reducing evoked presynaptic Ca(2+) transients. Many axons form synapses with multiple postsynapti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 27 30  شماره 

صفحات  -

تاریخ انتشار 2007